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IMAGE UNDERSTANDING AND INFORMATION EXTRACTION

Research Summary

This report summarizes our research progress for the period May 1, 1976
through July 31, 1976 in Image Understanding and Information Extraction. The
objective of this research is to achieve better understanding of image structure
and to improve the capability of image data processing systems for extracting
information from imagery and conveying that information in a useful form. The
results of this research are expected to form the basis for technology rele-
vant to military applications of machine extraction of information from air-
craft and satellite imagery.

Our research projects can be categorized into six heavily overlapping
areas: Image Segmentation, Image Attributes, Image Structure, Image Recogni-
tion Techniques, Preprocessing, and Applications.

IMAGE SEGMENTATION - In the previous quarterly report, we described a
technique for accurately estimating edge locations which is useful for appli-

cations requiring mensuration. Burnett and Huang have continued to pursue

this work, which uses a discrete position finite-state Markov process model

to produce accurate width estimates from blurred and nonlinear observations

in the presence of signal-dependent noise. It is shown here that the proposed

algorithm is optimal when the states are known a priori. Experimental results 3

are given for the case where the states are estimated from the available data.
Taking a different tack, Yoo and Huang report a clustering approach to

image segmentation. This approach, somewhat different from earlier approaches

to segmentation by clustering, involves four relatively distinct steps:

(1) feature extraction, (2) clustering of the features in the feature space,
(3) transformation of the clustering results back into the image, and (4) seg-
mentation based on cluster boundaries in the image. Examples of applying this

approach to various images are provided.




IMAGE ATTRIBUTES - We continue to pursue the analysis of shape and texture

in images. Results of recent progress with Fourier shape descriptors appear
in the APPLICATIONS section. Some new results of our texture research are

described by Carlton and Mitchell.

IMAGE STRUCTURE - Tree grammars have proved to be a useful approach for
characterizing the syntax or structure of images. In an extensive report
Fu and Keng describe the use of tree-grammatical rules for the description of
Y"objects' such as highways and rivers, By using additional semantic informa-
tion, they have extended their method to the problem of recognizing bridges.

Further results of using a syntactic approach appear in the APPLICATIONS
section,

IMAGE RECOGNITION TECHNIQUES = Pursuing the use of contextual information
for statistical classification, Fu et al. have discovered that the form of the
joint probability measure defined for the ''random field" description of the
image must meet certain functional constraints. This may not prove to be a
serious restriction; however, further results are not yet available. They are
also developing simulated data sets which will help to evaluate methods pro-
posed for extracting spatial (2-dimensional) infomration from multispectral
remote sensing data.

PREPROCESSING - Two-dimensional complex cepstrum analysis has been shown
previously to be a means for stability analysis of two-dimensional recursive
filters. 0'Connor and Huang discuss the use of this form of analysis for
enhancement of images blurred by certain point-spread functions. They are
developing a software realization using the Fast Fourier Transform and have
applied it successfully to filter stability analysis,

Berger and Huang have experimentally compared two methods for image

restoration in the presence of noise. The Projection Method and the Singular




Value Decomposition did not yield very different results in the cases in-

vestigated, over a significant range of noise levels. From a practical

standpoint, however, they found the Projection Method can utilize a priori

information about the image, if available, and is more efficiently applied

to images of larger size.

APPLICATIONS - Proceeding with their work, reported earlier, using Fourier

. el Sl o i
e s il

shape descriptors for the analysis of airplane shapes, Wallace and Wintz have

developed a normalization method which is not susceptible to noise problems

T

as have been previously reported methods. They are now anticipating the in-

tegration of their method with automatic boundary-finding procedures in order

2 to automatically detect and recognize airplanes.
E ]

Dang and Huang report some preliminary results from their work in locat-

ing airports in LANDSAT imagery. They are using a combination of spatial

| frequency filtering and syntactic analysis.

Mitchell describes the directions being pursued in the recognition of

tactical targets in FLIR imagery. This is a joint project with Honeywell

Systems and Research Division.
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IMAGE MEASUREMENT

J.W, Burnett and T.S. Huang

I. Introduction

Our last report [1] showed how a discrete position finite state Markov-
process model could be used in conjunction with the Viterbi algorithm (VA) to
produce accurate width estimates from blurred and nonlinear observations in the
presence of signal dependent noise. This report shows the algorithm is optimal
when the states are known a priori, and presents experimental results on the
algorithm's performance when the states are estimated from the available data.

The Optimality of the VA for Discrete Step Edge Location

-~

Recall [1] that a sequence £ will be decided over any other sequence &
when
p(2]g) P(®) > p(z]E) P(E) ()
As before let all permissible sequences be equally likely. Then (1) becomes
(for all permissible £ and é) decide £ over g_if
p(zle) > p(z[E) (2)
It is well known [2] that this decision rule minimizes the probability of
deciding sequence E when £ is the correct sequence. Now for step edges, each J

£ uniquely corresponds to an edge location. Thus the estimate of a step edge ]

location produced by the VA (with the stated assumptions) is the minimum prob- ?

i oot & e L o S e e e e
g S & - -

i oo,

* k
ability of error estimate. Therefore if " is the probability that the edge ;

is mislocated a points by the VA and T is
*
located a points by any other technique T

points the edge is mislocated by the VA,

the probability the edge is mis~-
*
m,e lLlet n be the number of

Let n (n=+ 1, + 2, ...) be the number

of points the edge is mislocated by any other technique. Then
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*
9 or E|n| > E|n"]| (3)
1" Equation (3) shows that on the average the accuracy of the VA cannot be improv-
ed upon. Further if |n| = |n "| then

*
Var (In]) = var ([n*[) = £ (fa] = [FD?r_ = = (o] = [F [)?n
o a

R e, R

2 %
= Ia (na - “a) >0 (4)
a
Thus the variance of the edge location estimates produced by. the VA cannot be i

bettered by any technique that is as accurate.

E | The Optimality of the VA for Discrete Width Measurement

With the assumption of independent edges let

* * * %

P = Pr(nw-a) = 'g‘. e Mo B (5a)
and

P~ Pr(nw- a) = 2 Tg Taeg (5b)

As noted in the previous section “Y < "Y for any y. Thus term by term the

" T L e gt i
x ¥
e e el Bttt & S

summation in (5a) is less than or equal to the summation in (5b). Therefore,

< p.. (6)

a

*
a
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By arguments similar to those in the preceding section

%
In,| < Eln,| (7)
and
%
Var (|n_|) < var (|n_|) (8)
providing-Eln:I = Elnwl. These last two equations show that the VA produces

the most accurate and minimum variance discrete width estimates possible.

Relation to the Continuous Case

A single measurement by the VA will be an integer number of sample points.
Since there is no physical reason the size of any given object will be an in-
teger multiple of the sampling interval some constraint must be placed on the
interval between points to prevent loss of measurement accuracy due to the
discreteness of the estimates.

Suppose the width of an object is considered to be a continuous variable
and that a maximum likelihood estimate of the continuous variable is available.
If the signal to noise ratio is high enough the estimate QC produced by this
technique will be normally distributed with a mean value equal to the true
width and a variance given by the Cramer-Rao lower bound on the variance of an
unbiased estimate of w [3]. Since ; is normally distributed with 95.4% con-

c

fidence the true width can be expected to fall in the interval [wc = 2T o

g -
ZOCR] [3] where céR is the variance predicted by the Cramer=Rao lower bound.
If for a particular problem QC is 31.5 sample points and ScR is .1 sample
points, it is reasonable to expect the true width is somewhere between 31.3
and 31.7 sample points. The closest width estimate the VA could produce would
be 31 or possibly 32 sample points.

Assume for the moment the probability that the VA decided wD(wD an integer)

sample points was the probability the continuous measurement fell in the

PP O D s MU e .




" y hadie o i
oy T Sy
SESRIN S SRS SO VRS NS

S i o e S s

interval [wD, wD+l] sample points. The probability of deciding 32 sample points

would be

Pr(w,=3z) = Prug > 32) = Pr(u, = 31.5 > .5)

o aliE

(——>5) =0

= Pr

Similar arguments may be made to show Pr(wD= 29) = 0, Thus with high probabil-
ity repeated measurmenets will all have a value of 31 sample points so that un-
less there is 'jitter" in the sample positions the bias will not be reduced by
averaging several measurements.

The problem can be avoided by specifying that the interval AX between the

samples is sufficiently small. As a rough guide
AX < ZGCR (9)

seems reasonable. This rule limits the bias due to the discreteness of a
single measurement to a maximum of 9cr and at least makes it possible for some
reduction in bias to occur by averaging several measurements.

Simulated Width Measurement

A pulse with a width of thirty sample points simulating a scan line across
an object to be measured was generated on a computer (see Fig. 1). The line
was convolved with a Gaussian line spread function. The blur had a standard
deviation of one sample point and was normalized so that the coefficients sum=-
med to unity. Each blurred intensity sample bk was transformed to a density

sample yk by

™ log bk + .15 (10)

to simulate the D - log E curve of film. Independent normally distributed

ST L) PO
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noise samples with zero mean and standard deviation

3
oyk =1y, (M)

were added to each Y value.
Different SNR's were produced by varying the intensity levels of the orig-

inal pulse. For this example the SNR was defined as

SNR = |maximum change in density due to signal] (12)
maximum noise standard deviation

Some blurred and noisy lines are shown in Fig. 2.

The simulaflon was performed with the intensity levels assumed to be un-
known. Eighteen training samples from each of the two density levels were
selected. For high SNR's the selection of training samples that are well away
from edge locations is easily accomplished by inspection of a single scan line.
At low SNR's selection of training samples is easily done by inspection of the
light intensity pattern for a SNR of 2.25 (see Fig. 3).

The training samples were averaged to produce density estimates h(;‘) and

h(az). These density levels were converted to intensity levels a, and a, with

1 2
the D - log E relationship
;£=,o(h@1)-.lﬂ

(recall the blurring coefficients sum to one). The sample mean is not the

optimal estimator of the density levels h(az) for this problem. The maximum

likelihood estimate for example would make use of the knowledge that the variance

of the samples also depends on the density levels, However, this estimate re-
quires the roots of a polynomial be found. It was decided the additional com=-
puter time required to do root finding would probably not be worth the decreased

varinace of the estimate and so the sample mean was chosen.
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Figure 3 Transmitted light intensity pattern for a SNR of
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The results are shown in Figures 4 and 5. Two hundred noise sample func-

tions were used at each SNR. Figure 4 shows that estimating the levels from
the available data has very little effect on accuracy. Figure 5 shows the var-
iance of the estimate is increased slightly as expected from [1].

A Cylinder Problem

Fhby Lt o NS

Consider a polished metallic cylinder on a black background of "infinite"
extent. Illumination is from a light source "infinitely' far away so that all
light rays striking the cylinder make a uniform angle ¢ with the horizontal
(see Figure 6). The observer is located directly over the cylinder and "'in-
finitely" far away.

The light Intensity in the direction of a reflected ray is [6]

reflected intensity = CRs(a) (13)

where C is the incident light intensity and Rs(a) is the ratio of reflected
energy to incident energy as a function of the incident angle a. By the assump-
tion on the observer's position and distance the light intensity in the direction
of the observer is CRs(a) cos S where S is the angle between the reflected ray
and the vertical. The problem is to measure the radius of the cylinder.

The problem of measuring the radius has several interesting aspects. First,
the ideal reflected light intensity in the direction of the observer is not con-
stant but varies with position on the cylinder. Further, surface areas of the
cylinder that are not directly illuminated by the light source cannot be seen
due to the assumption of a black background. Finally since no diffuse re-
flection occurs (due to the polished surface assumption) the areas of the cyl-
inder that are directly illuminated but do not reflect incident light toward
the observer also cannot be seen.

At any position X along a scan line across the cylinder the normal vector




Width (sample polnts)

30.5

30

29-5-"

© < Known levels

% = Unknown levels

“

0

1 1 I L I Ll | U

et dah G SEESWEEE SRR

-Flgure 4 The effect of unknown levels on the

ol

accuracy of the estimates




S
4
&
g
i £
: &
: £
4
b |
3 ¥
id 7
s —ﬂ; o = Known levels
4
C v et
x = Unknzwn levels
1.0 —
E —
by / o=
i
—
- —
£ °
2 -
-
2 —
. " —l
"
N e
3 e
3 -
o
& -—
Y A
: *
- N~
l .|
E L3
5 8
] g
E | <
b s
>

L1 LLiL

01 —
e

| &
| =
‘ i {1
L E:
3 i
] 4 2 v 6 ) 10 12
| Figure 5 The effect of unknown levels on the )

variance of the estimate

.
"

L v W R
;r‘




R

oy

o

ok

16

43put |Ad Build9]yaa >T_m_=uwam,
e wouy A3jsuajuy yb1| pansasqo jo uojlle|ndje; g aunbiy

3z
>
x

= e e e oo X

UO(3|S0d 43U = z ~_ - ln
X+ X

) (4 - Oso
x-1x

snipes =

Aes pa3d9|jau

Aeas Juapouy

JUIU0CLod pIAJas




17

to the cylinder surface will make an angle 6 with the horizontal where (from

Figure 6)
w] =%
cos 6 = o
0
i or
| sl X
g 8 =cos ) j (14a)
£ W,

‘ W, = center position of the cylinder

B Y0 = radius of the cylinder

The angle of incidence a is given by

]
é a=0 -9 (14b)
and 4
k| - i A - ..
; S=6 +a 3= 20 ) 3 (14c¢)
; observed intensity = CRst) cos S (14d)
A cylinder based on the model of equation (14) was generated and is shown |
3 |
[ in Fig. 7 A scan line across the cylinder is shown in Fig. 8. The center
{ .
L point v, is at position 46, % is 15 sample points and
;; .54 - ,042a 0 <a < 1.3
'E Rs(a) = . (15)
| 4854 + ,32760 1.3 Enzxy
|
i
1 The cylinder was convolved with a normalized Gaussian line spread function with
“
: a standard deviation of two sample points. The blurred intensity samples were
{

converted to density samples with equation (10) and noise with standard devi-~-

>

ation given by equation (11) was added. A blurred and neisy scan line is shown

in Fig. 9. If the radius was the only unknown quantity a minimum cost

A - -
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estimate wo could easily be computed by the VA, However, there is a ''nuisance"
parameter W) which Is also assumed unknown.
Assuming the product CRS(G) is known in equation (14d) an ideal scan line

]l is uniquely determined by the parameters Yo and Wye Therefore to maximize

p(z|D| - (16)

values of w

0 and W, are chosen to maximize

P(Z|wyowy) | (17)

or equivalently to find

M
min I 2n p(zklwo,w]) (18)
Woo¥ k=1

This minimization can be performed by inspecting the available data to establish

ranges in which w, and w, can be expected to fall, choosing an initial value for

0

Y from its possible range, and then finding a value of W) (from within its pos-

sible range) that minimizes (18). This procedure is repeated with the next pos-

sible value for Wo* The costs of the two values for W, are compared and the

value of Wo that has the lowest cost is stored as Woe Iteration proceeds by

finding the value of W) that minimizes the cost of the next possible value of W+
The minimum cost of each possible value for Yo is compared with the cost of Wo e
If the cost of Yo is less than the cost of Wor Yo becomes the new Woe

Twenty independent measurements of a cylinder radius were made using the

technique described above. The results are shown in Table 1. The range of

i Bk e acaiadeianans Slfh sl WalR il o iRl S
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Table 1
Radius .Measurements

-~

True radius wo Variance of o

15 14.8 .16

possible values for w., was taken as ten to twenty sample points and the center

0

position w, was assumed to be between sample points forty and fifty. Approxi-

1
mately seventy-five seconds of computer time were required for the twenty
measurements.

Measurement of a Road

A 1:5000 scale black and white negative taken with Kodak Plus X Aerographic

film was obtained and digitized on a flying spot scanner. The sampling rate was

ninety-six samples per millimeter and the data was quantized to 16 bits though
only the first 330 levels were occupied. The scene is shown in Figure 10 and
shows an intersection of two gravel roads in Warren County, Indiana (the white
spot on one of the roads is due to a parity error on a magnetic tape). Figure
11 shows a close-up of one of the roads and Figure 12 shows a scan line across
the road of Figure 11. Five hundred training samples from one of the roads
showed the average density was .942 with a variance of .00213. One thousand
training samples from the field surrounding the road had an average density of
.669 with a variance of .00236. The nominal film properties were obtained from
Tarkington [4] and Paris [5]. The frequency response of the image blur was
assumed to be the product of the film frequency response
1

2nf

l+GjﬁRﬁ

T,(F) = (19)
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and the response of an ideal diffraction limited lens with a cutoff frequency

of half the sampling rate:

T,(f) = %- (cos"(;-c) - {./ l-(-;c)2 )

c
(20)

fc = 48 cycles/mm
Figure 13 shows the line spread function corresponding to equations (19) and
(20).

Ten independent measurements of one of the roads were made and the results
shown in Table 2. The variance of each Y, wes taken to be .00213 if Y, corres-
ponded to a state where ik was a sample from the road or .00236 if Y correspond-
ed to an ik from the field.

The variance of the digital measurement was 1.15 sample points squared and
the uncertaintity indicated in Table 2 represents plus or minus two standard
deviations.

An optical measurement was made with a magnifier and reticle marked in
tenths of millimeters. Table 2 shows the results and uncertaintity of this
measurement.

The site of the road was visited and the width fround to be 18'-11" with
a tape measure, There is a fair amount of uncertaintity connected with this
measurement. The edges of the road are characterized by vegetation which can
overhang or encroach upon the road by several inches on either side. Measure-
ments on similar roads varied from 18' 6'" to 19' 10", Therefore, the true
width of the road the day the photograph was taken is not known exactly.

The Cramer-Rao bound 02 was calculated assuming the density levels, var-

CR
fances and line spread function used by the VA were correct. This variance was

1.23 sample points squared which is reasonably consistent with osA.
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Table 2
Road Width Measurement Results

B Road Width Width on

%% Hethad on Film Ground

;:

E VA 110.2 s.p. + 2.1 5.74 m + .1}

E (18'10" + 4)

i;

Optical 1.1 5mm + .05 5.75m + .25

¢ (18'10""+ 10")

% i RS 6m + .1
Measure (?éZIT"-&:GE)

Finally, the effect of the cutoff frequency fc in equation (20) was ex~-
amined, Line spread functions for different values of fc were calculated and

the ten measurements were repeated. The results are shown in Table 3.

Table 3 {
The Effect of fc on Wdith Estimates k

. 'J
: 4
c Width
(cycles/mm) (sample points) Variance
- VT 1.20
48 110.2 1.15
32 109.1 .96

S5 TR

Table 3 indicates the width estimates produced by the VA are not overly sensi-

.,
iy
oty Ll

tive to imperfect knowledge of the degrading system. |
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IMAGE SEGMENTATION BY CLUSTERING
M. Y. Yoo and T. S. Huang
l. Introduction

Two-dimensional photographic images consist of several fundamentai pic-
torial components. Each component has a more-or-less different property or
characteristic to human visual perception. We may roughly call these compon-
ents textural components or simply textures. It is almost impossible to de-
scribe the textures precisely because of the abundant variety of them in the
real world, whereas it is highly desirable to have even a rough measufe to
distinguish these textural components.

Zucker [1] tried to model the textures based on the concept of 'primi-
tive" and regular or quasi-regular patterns, but his approach is far from
being practical. A more practical approach to texture is Haralick's [2] ap-
plication of textural features for image classification based on the spatial
dependence matrix.

The set of possible descriptions of a picture is often so large that it
is impractical to describe the picture by assigning it to an element of this
set. Instead, a more practical description may often be given by partitioning
the picture into objects and assigning each of these objects to one element
of a set of possible descriptions of objects.

Segmentation is the partitioning of images into several basic textural

components, each of which has significantly different properties, (statistical,

topological). There have been several approaches in this direction. | Fisher
[3] tried to partition the picture function into a "unimodal subset' which

means conceptually a subset having only one "hill" in the intensity values of
the points In the subset and Gupta [4] and Kettig [5] adopted the statistical

hypothesis-testing of local mean and variance to detect the boundaries in

At

AT T




o a7 S

e B i .o

TR T v

closed forms and applied this approach to data compression and classification.

The human visual system is an excellent textural discrimination and
Julesz's [6] experiments show that not only the statistical but also the topo~
logical properties of images are important factors to textural discrimination.
So the best textural discriminator is the combination of statistical measures
and topological properties of images. Topological properties usually are de-
scribed by either sytactic methods or some algebraic measures.

We are not at this point in a position to combine the statistical de-
scription with the syntactic description in an appropriate way; for the present
we are mainly concerned with the pure statistical or the pure algebraic
approach. The approach which we propose consists of extracting pair features
using @ 3x3 moving window, "'eyeball clustering' of features and back-trans-
formation of the feature plane onto the original picture domain. This approach
is motivated by the different types of pair feature distributions for 16
different textures shown in Brodatz [7]. (See Fig. | for four examples; the
horizontal axis is sample standard derivation and the vertical axis denotes

sample mean. The size of the feature plane is 64 x 64.)

il. The Image Segmentation Algorithm

The image segmentation algorithm which we propose consists of three
major steps: (1) feature pair extraction, (2) clustering of features, and
(3) segmentation. The feature extraction is the most important step and is
the extraction of a certain measure which represents the local characteristics
of the image is a reasonably simple form.

The clustering of features is quite dependent upon the features chosen
in the first step. |f ideal features were chosen, the features are well

clustered in the feature plane and clustering is trivial, otherwise some
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heuristic clustering algorithm or ''eyeball clustering' should be adopted.

The segmentation is the back-transformation of the clustered features onto the
original picture domain in the segmented image form. The way of presentation
of segmented pictures may be either displaying the boundaries between different
textural components of the image or display of different major textures in
separate picture domain,

In many applications (data compression, shape description, classification,
etc.) the location of boundaries between different textures is important in-
formation so we have chosen the display of boundaries.

The detailed description of the three steps will follow.

A. The Feature Extraction

The extraction of features is a very important part in image segmenta-
tion. The best features may be the detailed description of the structural
relationship between the selected picture array and its surroundings, but this
is very complex to be implemented for computer processing. A reasonable mea-
sure which is significantly simplified but still contains major information
about the selected picture array is the statistical or the structural char-
acteristics within a window of appropriate size centered within the array. We
may lose some information by this simplification but in some sense this ap-
proach is more reasonable than detailed information for the textural discrimi-
nation. Natural images usually consist of many or several textures which are '
smoothly varying in shape within the same pattern rather than strictly webbed
and every picture array may be identified as a different texture by the de-

tailed description.

Multidimensional features require significantly increased memory size in
the computation and it is also impossible to see the clustering in the hyper-

feature space so we have worked with feature pairs. The three feature pairs
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which we have tried are the following:

1. The local sample mean and the local sample standard deviation.

(x=m, y=n) (x=m,y+n)

m (xoY)

(x+m,y=n) (x+m, y+n)

Figure 2 Local window used for local operations

Let P(x,y) be the picture array. Then the local sample mean M(x,y) and the
local sample standard deviation S(x,y) at the array point (x,y) based on a

local window size mxn are:

" x+m  y+n
M(X,Y) - 2mt nt u.i-m 0-3-n P(u,0)

2m+1) (2n+] Z z {P(u,U)"M(X,Y)}
u=x=m o=y=-n

1/2
S(XDY) e

2, Local minimum and local maximum:

Let D = {(a,B): a = x=m, ..., X+m, B = y=n, ..., y+n} then the local

minimum and the local maximum are

MIN (x,y) = minimum P(a,B)
(ayB) €D

MAX (x,y) = maximum P(a,B)
(ayB) €D

3. The number of the local "jumps' and the average magnitude of the jump:

We compare two adjacent points (in all directions) in the local window

|
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and if the grey level change is greater than a preassigned threshold value we
assume there is a jump. When we count the number of 'jumps'' we consider the
“jump ups' and "jump downs'' and two successive 'jump ups'' or 'jump downs' are
counted as one jump with a large amplitude. We take the total number of jumps
in the local area as feature 1 and the average magnitude of a jump as feature
2,
feature 1 = total number of jumps in the local
image of size mxn

feature 2 = the average magnitude of a jump in
the area

B. The Clustering of Features

There are many different approaches [8-12] reported for clustering data.
A simple and practical approach is ISODATA (lterative Self-Organizing Data
Analysis Technique [9]). In this algorithm several important initial cluster-
ing centers are picked up and assigned levels. Each sample point is merged
into the nearest center based on the Euclidean distance. Based on the initial
grouping, new clustering centers are calculated and if the new clustering
centers are the same as the old ones the clustering process is terminated;
otherwise the same kind of merging process is repeated.

The Euclidean distance may be modified if the extracted features have
significantly different magnitudes to avoid the '"masking effect' of the dom-

inant feature, as follows:

2 2
d= v/\rll(Mz-H‘) + wz(cz-o])

Where M'. o, are the mean and standard deviation at each sample point. The

V"s are weights. [|SODATA is easy to implement but does not give smooth

boundaries in the feature plane.

e
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The graph theoretic approach is a more elaborate clustering algorithm
[12]. For large sample size this algorithm becomes basically the same as the
valley seeking approach. The algorithm gives smooth boundaries but requires
an extremely large memory size for two dimensional data sets and is not prac-
tical for large samplas (64 x 64 is the largest data size for practical appli-
cation but further reduction of data is necessary for efficient use). ''Eyeball
clustering' is the rost accurate and is very flexible because we have complete
control of the data. We look at the data and cluster them in arbitrary groups
based on our previous experience. ''Eyeball clustering' is used for this exper-
iment because automatic clustering is practically impossible by the ISODATA or
graph theoretic clustering technique for very large images.

C. The Segmentation

This is the back-transformation of clusters in the feature plane onto the
textural components in the original picture domain. Different clusters in the
feature plane correspond to different textures in the original image domain
and the number of textural components depends upon how many clusters we allow
in the feature plane. An alternate way of segmenting images is locating
boundaries between different textures.

Resulting boundaries form closed contours except minor isolated or clus=
tered noisy points when we set boundaries between different textural components.
Once the clustering of features is complete, the textural discrimination in
the picture domain is determined and how we transform the clusters back onto
the picture plane does not affect the locations of the textural components.
Therefore, there is no preferred direction in texture discrimination processing
(compare with the BLOBS [13]). More clusters in the feature plane give finer

boundaries in the picture plane and this algorithm is a type of parallel top-

to-bottom approach.
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iii. Experimental Results

We calculate feature pairs at each picture array point using a 3x3
moving window centered at the array and normalize and quantize features to
appropriate levels. The number of the local jumps is a fairly small integer
and does not have to be quantized, but other features are quantized to 128
levels such that the maximum levels of a feature is 128,

Computer plots of the feature planes are shown in Fig. 3 to Fig. 10. Only
major clusters show up in the computer line print outs and our ''eyeball clus-
tering" is based on those of the line print outs, and these gould electrosta=-
tic prints are used in conjunction with line printer outputs of the same in-
formation to locate the initial cluster. Typical line printer output cor-
responding to Figs. 3 and 4 are shown in Figs. 11 and 12,

The density in the feature plane denotes the total number of picture
points in the original image plane which have certain feature pairs ;orre-
sponding to the coordinates of the feature plane. If there is a dense cluster
(Fig. 3) in the feature plane which may correspond to a large textural com=
ponent of the original picture, some other small clusters corresponding to
small textural components do not show up in the feature plane and renormali-
zation of data excluding the data contributing to the dense cluster is nec-
essary to see minor clusters (Fig. 4). Actually in many cases, the feature
plane has several clusters which give major boundaries in the pictorial plane.

The‘sagmentation based on the local jump is not quite adequate for the
pictures '"Girl" and "Professor' and we did not include them in this report.
Sample clustering regions are indicated in Figs. 13 and 14, The regions shown
in Fig. 13 are based on the clusters in Fig. 11. The regions in Fig. 14 are
based on the combination of the original dense cluster (Fig. 11) and the sub-

clusters (Fig. 12). Each clustering level in each feature plane was
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transformed back into the original picture domain and the corresponding picture
array is given the same level. So different textures in the picture domain
have different levels corresponding to the levels of the feature plane. We
arbitrarily set a boundary on the picture point with the higher level when two
different levels are adjacent. Boundaries of three different pictures (missile,
girl, professor) based on three different feature pairs are shown in part (A)
of Figs. 16 to 19 and Figs. 21 and 22, and Figs. 24 and 25. Part (B) of Figs.
16 to 19 show the over display of the boundaries on the original picture and
gives some idea about the accuracy of the algorithm. »

The boundaries shown in Fig. 17(A) are the combination of the major boun-
daries (see Fig. 16(A)) and the boundaries detected based on renormalized sub-
features (see Fig. 4 or 12). The single isolated noisy points are dropped in
all cases except in Figs. 16, 18, and 19. For Fig. 19 we used a threshold

value of 30 when we calculated the feature pairs.
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Abcissa is standard deviation,
Ordinate is mean.
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Figure 3 Feature Plane (missile)
Horizontal Axis: Standard Deviation
Vertical Axis: Mean
Size: 128 x 128
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L] e Horizontal Axis: Standard Deviation

5 Vertical Axis: Mean
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% | Figure 5 Feature Plane (missile)
Horizontal Axis: Local Maximum

G i Vertical Axis: Local Minimum

S Size: 128 x 128
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Figure 6 Feature Plane (missile)
Horizontal Axis: Number of local jump
Vertical Axis: Average amp of the jump
Size: 20 x 128
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Figure 7 Feature Plane (girl)
: Horizontal Axis: Standard Deviation
" Vertical Axis: Mean
Size: 128 x 128
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: Horizontal Axis: Standard Deviation
3 Vertical Axis: Mean
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Figure 10 Feature Plane (professor)
Horizontal Axis: Local Minimum
Vertical Axis: Local Maximum
Size: 128 x 128
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Horizontal Axis: Standard Deviation
Vertical Axis: Mean
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Figure 13 Clusters in Feature Plane
Horizontal Axis: Standard Deviation
Vertical Axis: Mean
Size: 128 x 128
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Figure 15 The original picture.
Size: 256 x 256
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Figure 20 The original picture.
Size: 256 x 256




Figure 21 Boundary. Mean and
standard deviation
used.

‘ Figure 22 Boundary. Local MIN
‘ and local MAX used.
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TEXTURE EDGE DETECTION USING MAX-MIN DESCRIPTORS

S. G. Carlton and 0. R. Mitchell

l. Introduction

This report is the sequel to the Nov. 75 = Jan. 76 ARPA Interim Report
Article "Texture Edge and Classification Using Max-Min Descriptors'. Since
that time research concentration in this area has been on improvement of the
window averaging technique used previously.

Application results of the min-max descriptors and the improved window

averaging are also discussed.

Il. MWindow Averaging (Previous)

Previously, the window averaging used in conjunction with the min=max
descriptors involved a variable window size, dependent on picture context, and
required two separate processing runs which provided averaging results in both
the horizontal and vertical directions. In the horizontal case, the averaging
technique compared the total extrema within a window to the right of each
pixel point with the total in a like window to the left of each points. Each
point is processed individually in this way and replaced by the average cal-

culated as

R =L
A = tot tot (l )

H Rtot 23 Ltot R

This average calculation gives maximum values at pixels located on the boun=
dary between texture regions. This same average was then computed using like

windows located above and below each pixel. The two averages were then com=

bined and resulting maximum were marked as texture edges.
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111. Window Averaging (Now)

The window averaging technique currently in use with the min-max descrip-
tors still uses variable window size based on picture context, but now the
horizontal and vertical averages are computed simultaneously, providing faster

and more accurate results.

R T T Harsh e ¢
e bl i e

In this technique, the window, NxN, is centered over a particular pixel

and four quadrants, N/2 x N/2, are formed as shown below:

The resulting average calculation used to replace each individual pixel value

in the resulting averaged picture is

ik (B+C) - (A+D) + (B+A) ~ (C+D) * scale
N2

The use of the absolute divisor based solely on the window size is because
the relative divisor in the previous method suffers from a disturbing quality:
an offecenter edge produced a bigger output then an onecenter edge. The
absolute divisor does not suffer this problem.

Although this averaging technique works very well, further research into

other possibilities is continuing.

T R 5
e U

B V. Aggllcations

As a test for the max-min texture technique, an image scanned from the

North East Test Area was used as input. Figure 1 shows the 512 x 512 black

and white image. Figure 2 shows the detected extrema with intensity used to

indicate the size extrema detected. Note that the forested area has a large

number of extrema of all sizes. A relatively simple forest detector can be
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created by thresholding the total number of extrema within a 60 x 60 window

surrounding each point. The output of this is shown as full white in Fig., 3.
The texture edges are detected using the window averaging described above.

Outputs from this program using window sizes of 60x 60 and 18 x 18 are shown

in Figs. 4 and 5, respectively. The local maximums in Fig. 4 are shown super-

imposed on the original in Fig. 6. These represent the edges between large

(at least 30 x 30) texture regions. Using the various size windows, we are

developing a hierarchical structure of texture edge detection. We are also

developing an edge detector based on combined texture and intensity informa-

tion.
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Figure 3 Forest detector output.

Figure 4 Texture differences using 60 x 60 window
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A SYNTAX-DIRECTED METHOD FOR LAHD-USE
CLASSIFICATION OF LANDSAT IMAGES

K. S. Fu and J. Keng

§. INTRODUCTION

This research is motivated by the nced for a method which can fully
automate land-use classification, such as, highway, river and bridge
recognition, from LANDSAT images. The statistical pattern recognition

techniques which have been developed up to now have not shown satisfactory

results, For instance, the land-use classification of LANDSAT images has
been studied by Todd and Baumgardner using spectral analysis [i]. It has ;
been shown that highwayé and other concrete arcas, such as parking lots,
could not be distinguished from each other due to the fact that both have
similar spectral characteristics in the spectral analysis. This report
introduces a method of spatial analysis for the same purpose of land-use

classification without encountering the difficulties mentioned abkove.

e

Spatial analysis in picture recognition problems can be treated by
syntactic approach [2). Recently, utilization of syntactic method to
describe spatial rclationships among different objects was sugaested by
Fu [3). Some related research has been done on LANDSAT images. Brayer
and Fu [4]) recognize a city scene by constructing a hierarchical graph
model which contains spatial distributions of all classes in the scenc. %
Veb grammars are used to describe spatial relationships between various i

objects in the scenc. Li and Fu [5] started with pointwise statistical

classification of LANDSAT images; then applied tree system approach to
LANDSAT data interpretation. Bajcsy and Tavakoli [6] designed a computer
program from the relational graph viewpoint to recognize objects from

satellite pictures,
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The research undertaken, here, applies to land-use classification of

LANDSAT images such as highway, river and bridge recognition, The suggest=-

ed approach is a Syntax-Pirected Approach [7). The method based on this

approach utilizes a set of tree grammar rules to describe the objeccts of ;

interest, such as highways and rivers. Accompanicd by utilizing semantic

O T T L T

information, the application of this method is extended to the problem of

e

e oo

bridge recognition.

T T

) The LANDSAT system (formerly the Earth Resources Technology Satellite . B

i oy

YERTS") consists of three major components; two spacecraft, the remote

™

sensors, and the ground data handling system [8]. The overall system was

designed to perform three functions; the acquisition of multispectral
images, the collection of data from remotely located sensors, and the

production of photographic and digital data. There are four channels;

channel 1 (wavelength 0.5-0.6 micrometer), channel 2 (wavelength 0.6-0,7
micrometer), channel 3 (wavelength 0.7-0.8 micrometer) and channel 4

(wavelength 0.8-1,1 micrometer). The first two channels are visible

e ae G s st

bands and the latter two are infrared bands. LANDSAT images are given in
a digitized form by NASA with spatial resolution of one pixel correspond-

ing to 79x56 (meters)2 on the earth,
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Il SYNTAX-DIRECTED METLOD

The proposed syntax-directed method involves the following steps:

An inferencc process is applicd to a set of training imagery data to infer

a set of grammatic rules which in turn formalizes a syntactic modecl. Based

upon this model, a set of most probable window patterns (which are gen-
crated by this grammar) is implementcd to analyze the test images and to

recognize the objects of interest.

2.1 Inference Process

The grammatical inference process is a man-computer interactive system,
Based on the knowledge of highway structures, several initial tree grammar
rules are written. Then a training arca is sclected (which in this case
is Lafayette, Indiana). The training image is processed by the initial
set of grammar rules. An existing highway map is also provided for the
purpose of comparison with the procesged result., For the highway struc- ;
tures which exist in the map but not in the processed result, the grammar
rules to genérate those structures are added to the initial sct of grammar
';’ rules, and the image is processed t6 test this hypothesis. After several ]
interactive steps the final set of grammar rules is obtained. The prim-

Itives for the grammar are chosen as a, b, ¢, d, e, f, g, and h. These

primitives are designed by a 2x2 pixel block. - '
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E For example, the window area of an intersection of highways is such

l

L ke i S

The inferred grammar is

S+ A->d A->d B ~>c
| | /\
A A B C C~>g

This inference process continues and at most has ZGA possible patterns.

k| The resultant grammar rules are of course too many. We design a simpli-

fied tree grammar analyzer using a window operation analyzer. The move-

e it N N Bl v

ment of the window is to shift one column or one row at a time. Then
multibranch patterns can also be represented by one-branch grammar rules.

For example, the window pattern mentioned above can be analyzed as the _

e . : _ "
Y Do et AT i et

3

following two window patterns.
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The one-branch grammar rules are (A‘, A2, 30 Ab corresponds to the ]
grammar rules presented later). 1
;@ (") s+ A, +d A, +~d A, +c A, +c
Tﬁ A3 A3 A“ Ah
3
3 (2) s+ A|+c Al-r(i A2->¢.i: A2->c
| | 3
v Ay AL A, A, :
,f : For a junction of two highways as follows
it can be analyzed by two window patterns that are generated by one-
branch grammar rules. The two patterns are
b | Then the resultant grammar rules can be expressed in terms of only one-
:J branch tree grammar rules as followéf.
s |
i ) The tree grammar G Is G = (v, r, P, S) where -
. % »
; V=1s, $, A, A, Ags Ays Ay Ags Ay Ag, Ags Ajgs @ b, c,
i d, e, fo g, h}
r(a =r(b) = r(c) = r(d) = r(e) r(f) = r(g) = r(h) = {1}

fStrlctly speaking, the simplification essentially reduces the tree grammar
to a string grammar, However, the spirit of syntax-directed method is
still preserved,
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Measurements from channels 1 and 2 are very sensitive to concrete areas.
A training area is set to establish the thresholds of the spectral intensity
of concrete areas (more precisely, concrete - like areas) in channels 1 and 2.
Then a threshold H is obtained from the sum of two thresholds from these chan-
nels. Watery areas exhibit a very low response in the infrared bands. This
contrast makes the extraction of watery areas from channels 3 and 4 easier.
The same procedure of threshold finding as that for concrete areas is applied

here to obtain threshold R for river recognition.

2.2 Syntax-Directed Method

The syntax-directed method consists of two levels, namely, transformation
process and tree grammar analysis. The transformation processor transforms
the multispectral images into a single binary image. The tree grammar ana-
lyzer then analyzes the transformed image based on a tree grammar. Structures
which are generated by the tree grammar are accepted; otherwise, they are

rejected. The detailed processes are illustrated as follows:
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2.2.1 Transformation Process

2.2.1.1 Thresholding Process. First the model of LANDSAT images

is defined in the Euclidean n-dimensional space E". The number n
represenfs the number of channels to be chosen. A pixel is described by
an ordered n-tuple (XI’XZ""’xn)' The transformation process works
such that if the sum of spectral intensities of the points in the same
position in two channels is greater than the sum of the two thresholds
from training area (for instance, channel 1, 2, and threshold H for high-
way recognition, and channel 3, 4, and threshold R for river recognition),
the position is set to 1; otherwise, it is set to 0. Thus, multispectral
images are transformed to a single binary image. (For river recognition,
the one-zero settings are inverse.)

it is true that both visible bands (chaﬁne\ 1 and 2) are sensitive
to the concrete spectra. But in real world images, the influence of
neighboring objects sometime cause the deformation wf the object of in-
terest (such as highway). But when there is only one channel (image)
available, the thresholding process can be designed by setting the thres-
hold on one image. Experimenfs of this case were also conducted and it
showed that by using the sum of the spectral intensities of two visible
channels (for highway) one obtains a more reliable result than that by
just setting a threshold on one channel.

2.2.1.2 Line Smoothing Process. After the thresholding process, a

line smoothing technique is applied to remove deformation and reestablish

continuity of the lines. For a given center pixel of a 3x3 window,
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the operation starts from the left upper corner pixel., If it is one, the
coluﬁn is shifted. |If it is zero, the surrounding eight pixels are
checked. |If there exists at least two "1's" which are not adjacent to
each other, then a "1'" is set on the center position. The operation
continues until reaching the rightmost column of the digitized image.
Then the operation is shifted one row down and starts from the left most
column with the same process until reaching the last row of the digitized

-image.

2.2.2 Tree Grammar Analysis
Input ;. The transformed binary image which is a Q(l1,J) memory array.
2252555 The syntax-directed analysis result on land use classifica=
tion.

Algorithm:

Step I

.
-

Set G(M,N) to be an operation window (8x8 in size).

Step 2: Load the array of Q(1,J) where J =1, 8; 1| =1,8
on the operation window G(M,N).

Step 3: Compare the operation window with a set of most
probable window patterns (see Fig. 1) which are
generated by the tree grammar Gt’ If it belongs
to that set of patterns, the primitive pattern in
that window is accepted, and stored in the resulting
memory array R(l1,J). If it does not belong to that
set of patterns, then go to step 4.

Step 4: Shift one column to the right of Q(1,Jd) in step 3.

Then go to step 3 and continue until reaching the

right most column.

it ) il S 2 T __'_.‘;_‘a.k-' 2
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| 2.2.1 Transformation Process

2.2.1.1 Thresholding Process. First the model of LANDSAT images

is defined in the Euclidean n-dimensional space En. The number n

‘ represenfs the number of channels to be chosen. A pixel is described by

; an ordered n-tuple (X],XZ,...,Xn). The transformation process works

E ¥ such that if the sum of spectral intensities of the points in the same

% position in two channels is greater than the sum of the two thresholds
from training area (for instance, channel 1, 2, and threshold H for high-
way recognition, and channel 3, 4, and threshold R for river recognition),
the position is set to I; otherwise, it is set to 0. Thus, multispectral
images ars transfofmed to a single binary image. (For river recognition,
the one-zero settings are inverse.)

It is true that both visible bands (chahnel 1 and 2) are sensitive

to the concrete spectra. But in real world images, the influence of
neighboring objects sometime cause the deformation of the object of in-
terest (such as highway). But when there is only one channel (image)
available, the thresholding process can be designed by setting the thres-

d hold on one image. Experimenfs of this case were also conducted and it
showed that by using the sum of the spectral intensities of two visible
channels (for highway) one obtains a more reliable result than that by
just setting a threshold on one channel.

2,2.1.2 Line Smoothing Process. After the thresholding process, a

line smoothing technique is applied to remove deformation and reestablish

wowt imuity of the lines, For a given center pixel of a 3x3 window,
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Step 5 ¢ Shift one row downward in step 3; go to step 2, until

reaching the last row of the digitized image. Syntac-

tically correct structures are recognized and stored
in the resultant memory array R{l,J). :
E Step 6 : Output the result, R(I,J), which is the result of

the syntax~directed method.
The flow chart for highway recognition by the syntax-directed methcd

is given in Figure 2. Since the rivers are similar linear features to

highways, the inferred tree grammar for highway can be used also for
river. This assumption is justified by the results of the experiments
on river recognition. The flow chart for river recognition is also pro-

vided in Figure 3.

2.3 Use of Semantic Information ;

Spectrally speaking bridges have similar characteristics to concrete
parking lots, urban housing, and highways. These aspects make statistical
: techniques .inadequate for bridge re;ognition. The idea proposed is to )
use the spatial relationship to distinguish highways from other concrete ;
areas by the syntax-directed method, and then to use semantic information
to distinguish the bridges from dgtected highways.,
First the images are processed by syntax-directed meghod for high=

ways and rivers. Then a semantic processor is desighed which sequentially

T A T — 0 2
RN SRS SR S A i

processes semantic rules as follows:
{ (i) Bridge pixels are highway pixels overlaying water areas
fj ! (river, lake, or gulf).

; (1i) Bridge pixels never exist singularly in the continent.
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Figure 2 The flow chart of highway recognition via
the syntax-directed method

Tree grammar
analysis

Sy

s

¢ e S A R T TR




Réal world digitized
satellite images
(infrared bands, channel 3 and 4)
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Figure 3 The flow chart of river recognition via the

syntax-directed method,
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(i11) Both ends of the bridge are always connected to the high-
ways.
A flow chart of the bridge recognition is in Figure 4. The length

of the recognized bridge can also be calculated by the following algo-

rithm,

" - T TR T TP ‘
IS R SRR R R

Algorithm of calculation of bridge length:

¥ Input: recognized bridge result,

OQutput: the calculated length of bridge.

‘! Algorithm:

(i) Calculate the number of horizontal rows which have at

N rm—

i least one bridge pixel. The value is a.

(i1) Calculate the number of vertical columns which have at

T YR

least one bridge pixcl. The value is b.

(iii) If a equals one, the length of the bridge c is bx 56

TEORRTG,

meters. 3

;
If b equals one, the length of the bridge c is ax79 i

4
meters.,

Otherwise go to (iv)

(Iv) The length of the bridge c =V (ax79)% + (bx56)2 .

The idea for this algorithm is to calculate the longest side
of a right triangle, and every pixel in LANDSAT images is
about 79 meters in vertical Jlength and 56 meters in horizontal

length on the earth, Step (iii) are the cases when bridge is

Py TR

right on the horizontal row or vertical column, The coordinate

% P
Ceasil Anl

W SR

Bl o A R Bk 8 e

for the locations of the recognized bridges are also located

by recording recognized bridge pixels.
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1

The flow chart of highway
recognition by the
syntax-directed method

The flow chart of river
recognition by the
syntax=-directed method

Implementation of semantic rules

{

Calculate the number of horizontal rows having
bridge points, the number to be 'a'

4

Calculate the number of vertical columns havinJ

bridge points, the number to be ''b! 1
- |
t
The length of bridge

is llcll

¢ =/(ax79)% + (b 56)>

The length of]
bridge is ¢

c = bx56

Locate the c
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b

via the

semantic proce

Bridge recognition result

syntax~directed method with

SS

Figure 4 The flow chart of bridge detection via the syntax-
directed method with semantic process




e i . s S BN Bl 5 .

s o MR S SRS

T

83

i1, EXPERIMENTAL RESULTS

The syntax~directed method has been implemented by FORTRAN pro-
gramming on the IBM 360/67 computer at the Laboratory for Applications
of Remotely Sensing (LARS). The experiments have been conducted on dif-

ferent LANDSAT images. Only one training data set (from Lafayette area)

was used for all the experiments.

3.1 Highway Recognition

Fig. 5(a) is a LANDSAT image over the Indianapolis, Indiana area.
Fig. 5(b) is the intermediate output after line smoothing process in the
transformation process. The highway recognition result, by the syntax-
directed method, is shown in Fig. 5(c). The area is a 96x96 image which
shows the junction of interstate highway 65 (northwest to southeast
direction) and highway 465 (north to south direction) in the left upper

part of Fig. 5(d). The experimental result shows that the syntax-directed

method is rather successful.

3.2 River Recoanition

For the purpose of showing that this method works also for rivers, a
terrian area northeast of San Francisco, California was processed by
the syntax-directed method for river recognition. The LANDSAT image is
Fig. 6(a). The river recognition result by the syntax-directed method,
Fig. 6(b), shows that it successfully recognizes a winding river in that

image. The size of the image is also 96x96. The topographic map for the

same area is shown in Fig. 6(c).
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Figure 5(a)

Satellite image of northwest part
of Indianapolis, Indiana




NI o

i e L s P

5 S ] et T o
| == (ool - == =T i
———— ] — e

85

i

!
Intermidiate output after line
smoothing process on Figure 5(a)

Figure 5(b)
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Figure 5(d) City map of Indianapolis, Indiana
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Figure 6(a) Satellite image of north part of
San Francisco Bay area, California
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' by syntax-directed method
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3.3 Bridge Rccognition

Fig. 5(a) is a satellite image over Indianapolis, Indiana. Fig. 7(a)
Is a topographic map of its lower part. It shows in the left part of the
map, that there is a bridge over the Lagle Creek Reservoir. The bridge

recognition result by the syntax-directed method given in Fig. 7(b) shows

» that the birdge is successfully recognized and the length is calculated

4 to be 672 meters. In the left lower part of Fig, 7(a) the scale of the

5 map is provided. The length shown in map is about the same as that found
by our method. The coordinate of the bridge can also be automatically ]
located by this method.

A third experiment is on the Lafayette area of which the LANDSAT image

a2 is shown in Fig. 8(a). Fig. 8(b) is a city map segment of the Lafayette
area which shows a small bridge on Highway 1-65 over the Wabash River.
This LANDSAT image has been processed by the syntax-directed method for
bridge recognition and the result is shown in Fig. 8(c). The bridge is
recognized in the right lower part of the image and its length is calcu-
lated to be 454.1 meters. The coordinates of location of the bridge is : 3
also given i& Fig. 8(c).

This information extraction (bridge length and coordinate) not only

contributes to the understanding of images and may also aid the automatic ]

guidance missile system in locating accurately the objects of interest.
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Figure 7(b) Bridge recognition of satellite image Figure 5(a)
by syntax=directed method
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Figure 8(a)

Satellite image of Lafayette area, Indiana
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Figure 8(c) Bridge recognition result of satellite image
Figure 8(a) by syntax=directed method
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IV, CONCLUSIONS AND REMARKS

The syntax-directed method is implemented by the "LOGICAL program-
ming technique' on binary images. So the software manipulates most opera-
tions on the machine logic level, Comparative studies are also carried
out with two different implementations. One uses the logical programming
and the other does not. The one with logical programming saves 30% of the
CPU time comparing with the other. Computer processing time for the syntax-
directed method is rather fast compared wiﬁh the previdus related work.,

For a 96x96 images, the proposed method takes only approximately 26 seconds
to detect and recognize highways. It takes approximately a total of 42
seconds to recognize highways, rivers and bridges.

Concerning computer memory space, there is another advantage of
LOGICAL programming in that every transforﬁed pixel takes only one byte
for storage. Usudlly each pixel takes 8 bytes (real number) or 4 bytes
for storage (integer). Use of the logical programming saves memory space
approximately 75% comparing with the one using four bytes storage for each
pixel.

The proposed syntax-directed method for land-usc classification has
the advantages of fast processing time and rather accurate results., It

can be easily extended to image segmentation problems,




o ST ARSI AR ST

B s e e ©

e . e et B W .

5.

98

REFERENCES

W. J. Todd and M, F. Baumgardner, “'Land-use classification of Marion
County, India<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>